Anti-inflammatory drug resistance selects putative cancer stem cells in a cellular model for genetically predisposed colon cancer.
نویسنده
چکیده
Mutations in the adenomatous polyposis coli (Apc) tumor suppressor gene represent the primary genetic defect in colon carcinogenesis. Apc+/- mouse models exhibit pre-invasive small intestinal adenomas. Cell culture models exhibiting Apc defects in the colon and quantifiable cancer risk provide a novel clinically relevant approach. The tumor-derived Apc-/- colonic epithelial cell line 1638N COL-Pr1 represented the experimental model. The anti-inflammatory drugs sulindac (SUL) and celecoxib (CLX) represented the test compounds. Compared with non-tumorigenic Apc+/+ C57COL cells, the Apc+/- 1638N COL cells and Apc-/- 1638N COL-Pr1 cells exhibited progressive loss of homeostatic growth control. Compared with Apc+/- cells, Apc-/- cells displayed increased expression of biomarkers specific for hyper-proliferation. Treatment of Apc-/- cells with SUL and CLX resulted in inhibition of anchorage-independent colony formation in vitro, which is indicative of reduced cancer risk in vivo. Mechanistically, SUL and CLX suppressed the expression of the Apc target genes β-catenin, cyclin D1, c-Myc and cyclooxygenase-2. Long-term treatment with high concentrations of SUL and CLX led to the selection of hyper-proliferative drug-resistant phenotypes. The Apc-/- SUL-resistant phenotype displayed spheroid formation and enhanced the expression of the stem cell-specific molecular markers CD44, CD133 and c-Myc. These data demonstrated the growth-inhibitory efficacy of SUL and CLX and indicated that drug resistance leads to the selection of a putative cancer stem cell phenotype. The study outcome validates a stem cell-targeted mechanistic approach to identify testable alternative leads for chemotherapy-resistant colon cancer.
منابع مشابه
Compare the effect of ginger extract and aspirin on COX-2 gene expression in colon cancer cell line HT-29
Background and aim: Colon cancer is the third most prevalent cancer in Iran. Prolonged colon inflammation is an important factor, in the development of colon cancer. Ginger has anti-inflammatory properties due to its content of [6]-gingerol and hence can play a role in the prevention of colon cancer. In this research the effects of ginger extract on reducing expression of the C...
متن کاملCompare the effect of ginger extract and aspirin on COX-2 gene expression in colon cancer cell line HT-29
Background and aim: Colon cancer is the third most prevalent cancer in Iran. Prolonged colon inflammation is an important factor, in the development of colon cancer. Ginger has anti-inflammatory properties due to its content of [6]-gingerol and hence can play a role in the prevention of colon cancer. In this research the effects of ginger extract on reducing expression of the C...
متن کاملInvestigation of the Effects of Vitamin C on Resistance to 5-FU in Colon Cancer Cells Line HT29
Introduction: There is growing evidence about the use of antioxidants to reduce the side effects of chemotherapy and cancer drug resistance. Therefore, this study aimed to use vitamin C as an antioxidant and determine its effect on drug resistance in HT29 cells. Materials & Methods: During this case-control study, HT29 cells were first cultured and evaluated by MTT assay for cell death in th...
متن کاملCancer stem cells: therapeutic targets
Cancer stem cells (CSCs) have been identified as rare cellular populations in many cancers, including leukemia and solid tumors. This minor subpopulation of cancerous cells is immortal tumor-initiating cells which thought to be responsible for cancer initiation, progression, metastasis, recurrence and drug/radiation resistance. Low proliferative rate, high self-renewing capacity, differentiatio...
متن کاملApplication of mesoporous silica nanoparticles for drug delivery to cancer cells
Cancer is one of the main causes of death worldwide. Chemotherapy is the most common method for cancer therapy which represent non-specific side effects on normal cells and tissues and drug resistance in cancer cells. There are two main mechanisms for Multi Drug Resistance (MDR) in cancer cells including: drug efflux pump and activation of anti-apoptotic pathways. Cancer chemotherapy disadvanta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oncology letters
دوره 15 1 شماره
صفحات -
تاریخ انتشار 2018